2D Data Visualization
Last updated
Was this helpful?
Last updated
Was this helpful?
import matplotlib.pyplot as plt
%matplotlib inline
def graph_grid(grid):
plt.imshow(grid, cmap='Greys', clim=(0,.1))
plt.title('Heat Map of Grid Probabilities')
plt.xlabel('grid x axis')
plt.ylabel('grid y axis')
plt.legend()
plt.show()
grid = [[.05, .1, .1],
[.04, .3, .02],
[.01, .023, .017],
[.005, .012, .06],
[.09, .07, .103]]
graph_grid(grid)
import matplotlib.pyplot as plt
%matplotlib inline
###
# The plot_fill function plots a probability density function and also
# shades the area under the curve between x_prob_min and x_prob_max.
# INPUTS:
# x: x-axis values for plotting
# x_prob_min: minimum x-value for shading the visualization
# x_prob_max: maximum x-value for shading the visualization
# y_lim: the highest y-value to show on the y-axis
# title: visualization title
#
# OUTPUTS:
# prints out a visualization
###
def plot_fill(x, x_prob_min, x_prob_max, y_lim, title):
# Calculate y values of the probability density function
# Note that the pdf method can accept an array of values from numpy linspace.
y = norm(loc = 50, scale = 10).pdf(x)
# Calculate values for filling the area under the curve
x_fill = np.linspace(x_prob_min, x_prob_max, 1000)
y_fill = norm(loc = 50, scale = 10).pdf(x_fill)
# Plot the results
plt.plot(x, y)
plt.fill_between(x_fill, y_fill)
plt.title(title)
plt.ylim(0, y_lim)
plt.xticks(np.linspace(0, 100, 21))
plt.xlabel('Temperature (Fahrenheit)')
plt.ylabel('probability density function')
plt.show()
average = 50
stdev = 10
y_lim = 0.05
x = np.linspace(0, 100, 1000)
plot_fill(x, 0, 50, y_lim,
'Gaussian Distribution, Average = ' + str(average) + ', Stdev ' + str(stdev))