creates a list of values from 0 to 100 with 11 elements. In other words (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100). See the linspace documentation.
Matplotlib is one of the most common plotting packages in Python to use it more succinctly
from matplotlib import pyplot as plt# This line is needed%matplotlib inlinedefvisualize_one_die(roll_data):""" Visualizes the dice rolls Args: roll_data (int): roll counts in a list from [1,6] Returns: None - shows a plot with the x-axis is the dice values and the y-axis as the frequency for t """ roll_outcomes = [1,2,3,4,5,6] fig, ax = plt.subplots() ax.bar(roll_outcomes, roll_data) ax.set_xlabel("Value on Die") ax.set_ylabel("# rolls") ax.set_title("Simulated Counts of Rolls") plt.show()roll_data =simulate_dice_rolls(500)visualize_one_die(roll_data)
Example: ScatterPlot
We are using some made-up data for the x and y positons of the points.
import matplotlib.pyplot as plt%matplotlib inlinex = [1,2,3,4,5,6,7,8,9,10]y = [2,4,6,8,10,12,14,16,18,20]plt.scatter(x, y)plt.xlabel('x values')plt.ylabel('y values')plt.title('X values versus Y values')plt.xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])plt.show()
Example: Bar Chart
import matplotlib.pyplot as plt%matplotlib inlinex = [1,2,3,4,5,6,7,8,9,10]y = [2,4,6,8,10,12,14,16,18,20]plt.bar(x, y)plt.xlabel('x values')plt.ylabel('y values')plt.title('X values versus Y values')plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])plt.show()
Example: Bar Chart Again
You might remember that the x-axis is actually a discrete variable. The major change in the code was that the x values are now strings instead of numerical.
import matplotlib.pyplot as plt%matplotlib inlinex = ['apples','pears','bananas','grapes','melons','avocados','cherries','oranges','pumpkins','tomatoes']y = [2,4,6,8,10,12,14,16,18,20]plt.bar(x, y)plt.xlabel('x values')plt.ylabel('y values')plt.title('X values versus Y values')plt.xticks(rotation=70)plt.show()